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We present results for the average mass transfer to a spherical squirmer, a model
micro-organism whose surface oscillates tangentially to itself. The surface motion
drives a low-Reynolds-number flow which enables the squirmer either to swim relative
to the fluid at infinity, at an average speed proportional to a streaming parameter,
W , or to stir the fluid around it while remaining, on average, at rest (if W = 0),
as represented by a hovering parameter, b. We assume that the amplitude of the
time-periodic surface distortions is scaled by a dimensionless small parameter ε, and
consider only high Péclet numbers P – a measure of convection versus diffusion – by
setting P −1 = ε2γ , where γ is a parameter of O(1). It is shown that the average mass
concentration distribution satisfies a steady convection–diffusion equation with an
effective velocity field that is different from the actual mean velocity field. The model
is used to calculate the mass transfer across the surface of the squirmer, measured by
the mean Sherwood number Sh.

We find asymptotic solutions for small and large γ and numerical results for the
whole range of values. While the large-γ expansions are reproduced well by the
numerical results, there is a discrepancy between the two at small γ . We believe this
is due to very small recirculation regions, attached to the surface of the squirmer,
which make boundary layer theory applicable only when 1/γ is immense.

For the parameters chosen in this study, results indicate that both hovering and
streaming contribute to the mass transfer, although streaming has a greater effect.
Also, energy dissipation considerations show that an optimum swimming mode exists,
at least at small and large γ , for any given uptake rate. However, other factors have
still to be taken into account, and the model realism improved, if we want to make
predictions for real aquatic micro-organisms.

1. Introduction
The number of microscopic-plant population explosions, commonly known as

algal blooms, keeps increasing in coastal waters. While some blooms may feed and
benefit all in the ocean, others can have a negative impact on the environment, on
wildlife, and on humans. Processes at the individual level have a strong influence on
overall planktonic production, and can determine the properties of ecosystems (Koehl
1989). The amount of nutrient taken up from the water constitutes one of the most
important of these processes, because it strongly affects a micro-organism’s growth
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and reproduction. However, many factors affecting nutrient uptake still have to be
elucidated. In this paper, we will focus on the impact of self-propulsion on the mass
transfer to an individual.

Aquatic micro-organisms have developed a variety of self-propelling structures,
some of which have been well documented, such as for instance the hair-like organelles,
called cilia, of ciliated protozoans. Cilia may cover small or large regions of the cell’s
body. All ciliates beat the cilia to swim, and some species, like the photosynthetic ciliate
Myrionecta rubra (= Mesodinium Rubrum, Krainer & Foissner 1990) for example, beat
them very rapidly for short periods of time. Myrionecta rubra moves by bursts, or
jumps. Jakobsen (2001) defines a jump as a “five-fold increase of swimming velocity
within the time required to move one bodylength, and a jump path length longer than
10 body lengths”. He has observed this swimming behaviour in Mesodinium Pulex, a
species which has been linked to M. rubra but that is in fact different (Crawford 1989),
and two other planktonic protists, as an escape response to a syphon flow mimicking
the feeding current of some filter feeding copepods. The velocity during the jump
was between 100 and 200 bodylengths per second, as observed by several authors
(Dale 1987; Crawford 1992; Crawford & Purdie 1992). Other workers observe the
velocity to be independent of size (Sleigh & Blake 1977). However, this may depend
on the species under consideration (Crawford 1992). Given that the micro-organism
responds to hydrodynamical signals, and not to olfactory or visual cues, then the
escape response will occur not only in the proximity of predators, but also in (weakly
or non-weakly) turbulent flows. This means that micro-organisms in a turbulent
environment will jump more frequently than those in calm waters. Observations of
M. Rubra responses to diurnal flushing from the Southampton estuary support this
claim (Crawford & Purdie 1992). Thus, if convection has an effect on the mass
transfer, it would be under turbulent conditions and during these bursts of activity
when this effect is largest.

In contrast with ciliates, in cyanobacteria the anatomical features responsible for
propulsion are not uniquely defined. Several locomotion mechanisms have been
proposed according to the strain: some Oscillatoriaceae have functional slime-
extruding pores and helical fibrils on their surface for screw thread gliding (Hoiczyk &
Baumeister 1995; Hoiczyk 2000), while Synechocystis (Skerker & Berg 2001) and
Myxococcus (Wall & Kaiser 1999) use tentacle-like organelles (type IV pili) for social
gliding. Recently, some possible locomotive organelles, similar to cilia, have been
observed by Samuel, Petersen & Reese (2001) in a Synechococcus strain, which led the
authors to suggest a locomotive mechanism analogous to that of eukaryotic ciliates.

For simplicity, we will model the micro-organism as a sphere swimming through
otherwise still water by means of rapid tangential distortions of its surface, so
that a particle on the surface oscillates periodically in time with large frequency
σ , and small dimensionless amplitude ε. This modelling approach has been used
by workers focusing on cyanobacterial propulsion (Stone & Samuel 1996; Ehlers
et al. 1996). Taylor (1951) and Tuck (1968) focused on infinite sheet models for fish
swimming, in which a flexible and thin infinite sheet oscillates to propel itself. Blake
(1971a) suggested a ciliary propulsion model where the cilia tips are replaced by
a moving surface on which travelling waves propagate and induce the propulsive
force on each cell, though Lighthill (1952) first analysed the self-propulsion of almost
spherical bodies on which surface-travelling waves propagate. In this paper, we use
the velocity field calculated by Blake (1971a) from the Stokes equations, where the
flow is time-dependent but dynamically quasi-steady. However, in contrast with Blake
(1971a), we restrict attention to surface tangential displacements only and our model
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micro-organism, called a spherical squirmer, reduces to a sphere of radius a. The
velocity field in the frame of reference of the squirmer becomes
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where σ is the principal frequency of oscillation, Vn is defined as

Vn =
2
√

1 − µ2

n(n + 1)
P ′

n(µ),

with µ = cos θ and Pn the Legendre polynomial of order n. Here r (r = r∗/a) and θ are
dimensionless spherical polar coordinates. We also have assumed that only the first
three coefficients in the expansions (1.1) and (1.2) are non-zero. The parameters B1, B2

and B3 are functions of time and they represent a wave of tangential displacements
moving around the surface of the micro-organism. In fact, a material point, initially
at θ0, will, at dimensionless time t (t = σ t∗), be in the position

θ = θ0 + ε

3∑
n=1

βn(t)Vn(cos θ0) = θ0 + ε{(b1V1 + b3V3) sin t + b2V2 cos t}, (1.3)

where we have chosen the functions βn as oscillatory functions of time. The small
parameter ε gives a measure of the amplitude of the wave. The normalized distance
(θ − θ0)/ε is the sum of three standing waves, with two extrema when t �= 1

2
π(mod π),

at θ = 1
4
π and θ = 3

4
π, or three when t = 1

2
π(mod π); the nodal points are at 0 and π.

Now, using the definition and the Taylor expansion of the tangential velocity at the
surface, and the orthogonality relationship for the associated Legendre polynomials,
Blake (1971b) deduced that

Bn = εβ̇n − ε2

8
n(n + 1)(2n + 1)

3∑
m,k=1

βmβ̇k

∫ π

0

VnVm

dVk

dθ
sin θ dθ ; (1.4)

see also Brennen (1974). The integrals in the above equation may be determined
explicitly, leading to

Bn = εβ̇n + ε2

m=3∑
m=1

k=3∑
k=1

cnmkβmβ̇k, (1.5)

where cnmk is known; it becomes clear that Bn has a term proportional to β̇n, and
terms proportional to the products βmβ̇k . Thus, the velocity field is of the general
form

U ∗
r = aεσu1(r, µ, t) + aε2σ [u0(r, µ) + u2(r, µ, t)], (1.6)

U ∗
µ = aεσv1(r, µ, t) + aε2σ [v0(r, µ) + v2(r, µ, t)]. (1.7)

Thus, the normalized flow,

U =
U∗

aσε
= u1(r, µ, t) + ε[u0(r, µ) + u2(r, µ, t)], (1.8)
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is composed of (a) a steady part, εu0 = ε(u0, v0), of order ε, (b) an oscillatory
component u1 = (u1, v1), of order 1, and of the same frequency as the fundamental
frequency of the surface oscillations, and (c) the component εu2 = ε(u2, v2), of order
ε, which oscillates at twice the fundamental frequency. The oscillatory parts of the
velocity field can therefore be written as

uj = (uj , vj ) = Re[ũj exp(ij t)]; (1.9)

the real and imaginary parts of ũj are given explicitly in Appendix A. Solution (1.8)
may be thought of as the first two terms of an expansion in ε of the velocity field,
as explained by Brennen (1974). As stated above, we are restricting our attention to
these terms, mainly to simplify the analysis and see the effect on the mass transfer.
This model is idealized in many ways, but relaxing individual idealizations, such as
using a higher wavenumber, would increase the realism only slightly.

The basic hypothesis of this work is that the squirming motions stir up the fluid
near the sphere and, if sufficiently vigorous, will enhance the absorption of nutrients
by the cells. It turns out that ‘sufficient vigour’ requires that we set the Péclet number
to P −1 = γ ε2, with γ of order 1. We calculate the averages, over a time cycle, of
the concentration field and the total mass transfer to the squirmer. The average
concentration field equation is a steady advection–diffusion equation, as for a steady
squirmer (Magar, Goto & Pedley 2003), except that now the effective steady velocity
field A is different from the steady part u0 of the actual velocity field. Adopting an
Eulerian point of view, (Ar, Aθ ) may be written as a hovering velocity characterized by
a parameter b, and a streaming velocity proportional to a parameter W (see below).
Browsing is the term used for motion which combines the two regimes. Asymptotic
solutions for small and large γ are obtained, and numerical results determined for
the whole range of values of γ .

2. The mass transfer equation
The concentration of dissolved nutrients C∗, changes in time subject to the flow

field (1.6) and (1.7), and to random motions quantified by the diffusivity D,

C∗
t∗ + U∗ · ∇∗C∗ = D∇∗2

C∗. (2.1)

With C∗
∞ the concentration at infinity, and C∗

0 the concentration at the surface of the
micro-organism, the scalings r∗ = ar , t∗ = t/σ , U∗ = aεσU , and C∗ = (C∗

0 −C∗
∞)C+C∗

∞,
lead to the transport equation

Ct + εU · ∇C = P −1∇2C. (2.2)

The quantity P = a2σ/D, defined as the Péclet number, measures the relative
importance of advection versus diffusion. Realistic values for P are small to
moderately large – O(100), say – for dissolved nutrients. For instance, using the
data reported by Crawford & Purdie (1992), who have found escape velocities for
M. Rubra larger than 8 mms−1, or 200 bodylengths per second (corresponding to a
bodylength of 40 µm), and taking 10−3 mm2 s−1 as a typical value for the diffusion
coefficient of solutes in water (Ghiu, Carnahan & Barger 2002), we find that the
Péclet number has a value of 320. P would be much smaller for uptake by bacteria,
say, but could be larger for larger ciliates or for uptake of very large molecules or
colloidal particles such as viruses, for which D is very small. The most interesting
effects occur for large P , so we set P −1 = γ ε2, where ε is the amplitude of oscillation
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and γ is formally of O(1), and then consider both large and small γ , for it is unclear
what physical values would be appropriate for the amplitude of oscillations.

Since we are assuming that ε is a small parameter, we cannot neglect the temporal
variations of the concentration field when solving equation (2.2), even at large Péclet
numbers. However, we can compute the time-averaged concentration field for and
mass transfer rate to the squirming sphere, from equation (2.2), with the boundary
conditions C = 1 on the surface of the micro-organism, and C = 0 at infinity.

A measure of the mass transfer rate is given by the Sherwood number, defined as

Sh =

∫ 1

−1

(
∂C

∂r

)
r=1

dµ, (2.3)

but since we will determine the average nutrient absorption only, C in equation (2.3)
is in fact the average concentration field over a time cycle.

3. Solution for P large
With P = (ε2γ )−1, we try a regular expansion

C = C0 + εC1 + ε2C2 + . . . . (3.1)

Substituting this expansion, together with the complete velocity field, into the mass
transfer equation (2.2), we deduce at once that C0 is independent of time.

Next, the O(ε) equation gives

∂C1

∂t
= −u1 · ∇C0 = −1

2
[ũ1 exp(it) + ¯̃u1 exp(− it)] · ∇C0, (3.2)

where u1 was defined earlier – see equations (1.6) and (1.7) – and an overbar means
complex conjugate. Integrating gives

C1 = C̄1(r, θ) +
i

2
[ũ1 exp(it) − ¯̃u1 exp(− it)] · ∇C0; (3.3)

thus, C1 is the sum of an unknown time-independent function, and of two terms
oscillating in time at the fundamental frequency of oscillation of the surface.

Then, at O(ε2) we have

∂C2

∂t
+ u1 · ∇C1 + (u0 + u2) · ∇C0 = γ ∇2C0. (3.4)

Finally, we take the time average of equation (3.4), using equation (3.2), and obtain
a steady convection–diffusion equation for C0, of the form

A · ∇C0 = γ ∇2C0, (3.5)

where the effective velocity field A is,

A = 1
2
Im(ũ1 · ∇¯̃u1) + u0. (3.6)

It should be noted that A is not the same as the real mean velocity field u0. Appendix B
summarizes the main steps of the calculation of A.

It can be seen that (3.5) is the steady mass transfer equation, as analysed for steady
squirmers by Magar et al. (2003), but with an effective velocity field instead of the
actual steady squirming velocity of the model described in that paper, and with 1/γ

in the role of the Péclet number.
Since all the velocity fields depend on the products b1b2 and b2b3, we choose to

express A in terms of a parameter b defined as b1b2, and a parameter W proportional
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Figure 1. Close-up of the recirculation region when b = 60 and W = 1.

to the mean with respect to time of the cell’s swimming velocity, which is given
by Blake (1971b). With the simplifications assumed in this work, W reduces to
4b2(−b1/3 + b3/7)/5. We call b the hovering parameter because when W = 0 and
b �= 0 there is stirring, but no mean swimming speed, while W is designated as a
streaming parameter. Finally, browsing refers to the general mode of locomotion,
that is, the mode where the micro-organism both hovers and streams to propel itself
through the water and stir the nutrients.

It is of interest to note that, unlike the actual mean velocity field, the tangential
velocity Aθ vanishes at six points over the surface in the upper hemisphere of the
squirmer, at values of µ0 = cos θ0 which are roots of the polynomial (µ2

0 − 1)(21µ4
0 −

14µ2
0 + 1) – see Appendix A. Thus, for any value of b or W , there is a tiny toroidal

recirculation region, attached to the surface of the micro-organism, as shown in figure 1
for values of b = 60 and W = 1. These recirculation regions are absent in streamline
contours of the steady flow field u0. While it is clear that near the micro-organism
the effect of the averaged term has an important influence on the streamlines, in the
far field the steady flow u0 dominates the fluid motion. For the example in figure 1
the flow A flattens the streamlines near the region above the micro-organism, but the
effect close to the cell’s surface depends on the values of b and W chosen.

4. Asymptotic expansions for small and large 1/γ

As indicated by Magar et al. (2003), equation (3.5) may be solved asymptotically
for both small and large values of the parameter 1/γ , which is a measure of the
effective Péclet number. The determination of the Sherwood number for small 1/γ

is straightforward if one follows a procedure similar to that developed by Acrivos &
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Taylor (1962), and the expansion of Sh to second order,

Sh = 2 +
W

γ
+

1

γ 2
(−0.3314W 2 + 1.6757 × 10−2Wb + 8.2834 × 10−5b2), (4.1)

shows that the streaming part of the flow has a greater impact on the nutrient uptake
than the hovering part. In fact, to first order the nutrient distribution and uptake are
completely determined by the magnitude of the mean swimming speed.

In the large-1/γ limit, when convection dominates the distribution of nutrients, the
concentration contours follow closely the effective streamlines. Here the concentration
gradients are very large close to the surface of the squirmer, leading to the formation
of a concentration boundary layer in the vicinity of the cell surface. In this region the
coordinate system is approximately orthogonal, with a local variable Y = (r − 1)/γ 1/2

chosen so that, at large 1/γ and close to the squirmer’s membrane, convection and
diffusion are both important, and equation (3.5) simplifies to

∂2C

∂Y 2
= −Yf ′(µ)

∂C

∂Y
+ f (µ)

∂C

∂µ
, (4.2)

where f (µ) = (1/9)(b/3 + 5W/4)(1 − µ2)1/2P 1
5 (µ), P 1

5 (µ) being the Legendre function
of first degree and fifth order. Equation (4.2) above holds if the gradient of the
concentration is linear in the boundary layer. If the effective velocity Aθ vanished in
some region on the surface of the sphere, then a scaling of the order of γ 1/3 would
be expected there. However, the no-slip condition is satisfied only at six stagnation
points on the surface (see below) so such a region does not exist.

A similarity solution C = erfc[Y/g(µ)] will exist if g is a solution of f ′g2 +
1
2
f (g2)′ = β , where β is an arbitrary constant; this leads to a function of the form

g =
1

f

{
α + β

∫ µ

f (ρ) dρ

}1/2

, (4.3)

with α a constant. Thus,

g(µ) =

√
96

5(b/3 + 5W/4)

(k + 3µ7 − 7µ5 + 5µ3 − µ)1/2

|(µ2 − 1)(21µ4 − 14µ2 + 1)| , (4.4)

where k depends on α and β . We propose that g must be bounded at any stagnation
point at which the flow impinges on the squirmer surface. There are three such
points: at µinf =1, 0.2852 and −0.7650. Accordingly, the flow streamlines separate at
the points µsup =0, 0.7650 and −0.2852. Now, given that the boundary layer thickness
is of order γ 1/2, the Sherwood number is proportional to γ −1/2, and one may easily
relate the constant of proportionality, c say, to the function g given by (4.4) above
(Leal 1992), and conclude that

c =

√
5(b/3 + 5W/4)

6π

∑
µinf

[h(µsup) − h(µinf)]
1/2, (4.5)

with h(µ) = 3µ7 − 7µ5 + 5µ3 − µ. The sum is over the five surface intervals between
the six stagnation points on the upper hemisphere. Adding all contributions, we then
obtain at leading order,

Sh = 1.182

√
b/3 + 5W/4

γ
, (4.6)
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which shows that for large 1/γ both swimming modes are important, although the
streaming flow still affects the nutrient distribution to a somewhat larger extent than
the hovering. Finally, the example portrayed in figure 1 indicates a maximal thickness
of the recirculation region of around 0.08, and since the boundary layer thickness is
of the order of γ 1/2 for small γ , for the boundary layer to be thin enough we require
that γ 1/2 � 0.08, say

γ 1/2 ≈ 0.005;

thus, to reproduce the asymptotic behaviour we would need to consider values of 1/γ

around 40 000. This is beyond the scope of our computations.

5. Numerical procedures
No analytical solution is available when 1/γ takes intermediate values; for that

range, therefore, we have computed the Sherwood number using several techniques.
For a hovering micro-organism, we considered a Legendre polynomial spectral method
(in θ) such as that used by Magar et al. (2003), with finite-difference discretization
(in r), but solved iteratively with two different iteration schemes: the generalized
minimal residual (GMRES) method (Saad & Schultz 1986), or the biconjugate
gradient stabilized (BiCGSTAB) algorithm. For cases when W is non-zero, we used
instead a finite-volume code, also described in Magar et al. (2003); in addition, for
streaming micro-organisms, we computed the concentration distribution using an
adaptive finite-difference algorithm (Blom, Trompert & Verwer 1996). The adaptive
algorithm uses the Method of Lines to reduce equation (3.5) to a system of ordinary
differential equations, which is discretized by second-order finite differences and solved
iteratively using the BiCGSTAB method. Finally, the system of differential algebraic
equations is solved implicitly using a time-integrator with variable step sizes. The
reason for using so many different techniques is that the results, at large values of
1/γ , did not agree with the asymptotic solution and further confirmation was needed.

In all the schemes, we used the radial variable ξ = ln r , so that the grid was finer
close to the sphere surface and coarser in the far field. In the finite-volume code, the
grid size was adjusted according to the value of 1/γ , so that there were at least five
grid points, in the radial direction, inside the boundary layer predicted by the theory
(see § 4). For b = 0 and W/γ up to 200, for instance, it is sufficient to have the radial
grid size of the order of 10−3, or an angular grid size around 0.3◦.

On the other hand, the adaptive scheme starts with a coarse grid, and this grid
is refined (up to a level chosen by the code user) by bisection in every coordinate
direction. In regions of steep gradients in space, the convection–diffusion equation is
solved in a series of nested grids, and all the points computed are afterwards used in
the solution. This practical feature keeps the amount of computer space and computer
time to a minimum, and constitutes a clear advantage of the adaptive code over the
finite-volume one. Another advantage of this algorithm over the finite-volume code
is that the former is vectorized, originally for the Cray YMP (Blom et al. 1996), but
we modified it to have the appropriate machine constants for machines with IEEE
arithmetic, such as IBM PCs, and used the vectorizer of the Intel Fortran Compiler.
So, the adaptive code is preferable in terms of speed and memory storage.

In the finite-volume and adaptive codes, we add the term ∂C̄0/∂t , to the right-hand
side of equation (3.5), that is, we convert it into an unsteady convection–diffusion
equation, and determine then the steady state. The computations start impulsively at
t = 0 in both algorithms; that is, we assume that C =1 at the surface (which has been
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Figure 2. Sh vs. W/γ for W/γ up to 20, for streaming squirmers (b =0), from the
finite-volume code.

reduced to the point ξ = 0), and C = 0 elsewhere. Also, the nutrient concentration
is set to zero at a sufficiently large value ξmax of ξ – see Magar et al. (2003) for
a discussion on the validity of this approximation. Finally, the axisymmetric flow
condition implies that there is no flux of nutrients across the axis of symmetry θ0 = 0.
Other than the similarities pointed out, the two codes follow different numerical
techniques, but both should give comparable results for the Sherwood number as a
function of the parameters 1/γ , b, and W .

6. Results and discussion
6.1. Streaming micro-organisms

For squirmers streaming through the water (b = 0), we determined the Sherwood
number for values of W/γ larger than 0.2, and compared it to the asymptotic
behaviour when possible. When W/γ is small, the code and the expansion (4.1) give
comparable results for W/γ up to approximately 0.5; for larger values, only numerical
techniques are available. Results for the Sh vs. W/γ relationship, up to W/γ = 20,
are shown in figure 2.

For values of W/γ between 20 and 100, both codes suggested that Sh was
accurately proportional to a power of W/γ . Using the finite-volume method (FVM),
this relationship was of the form

Sh = 2.444(W/γ )0.372, (6.1)

while the adaptive finite-differences algorithm gave

Sh = 2.445(W/γ )0.373, (6.2)

using a completely different procedure. Thus, expressions (6.1) and (6.2) can be taken
to be reliable; the discrepancy with the asymptotic expansion (4.6) at large W/γ may
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therefore be attributed to the fact that the values of W/γ for which (6.1) and (6.2)
are valid are too low for large-W/γ asymptotics to apply.

It remained inconclusive whether the numerical schemes produced an asymptotic
behaviour of the form Sh ∝ (W/γ )0.5 for values of W/γ much larger than 100,
because we cannot claim accuracy of the computations for such parameter values.
However, if we fit a curve to the results on a log-log plot, its slope increases gradually
as W/γ increases, but is still smaller that 0.5.

6.2. Hovering micro-organisms

In this case there is no uniform flow at infinity (W =0) and both the velocity field
and the Sherwood number are functions of b/γ (see Appendix A). As stated in § 5,
the results were obtained using the Legendre polynomial method with the iterative
scheme developed by Saad & Schultz (1986). For b/γ up to unity, the results were
best approximated by

Sh = 2.00007 + 0.0000829

(
b

γ

)2

. (6.3)

Comparing this with (4.1), we see that the agreement is excellent. In fact, equation
(6.3) approximates the numerical results with good accuracy for b/γ up to 100 (the
relative error is smaller than 1 %).

For larger b/γ , only results up to b/γ = 395 could be obtained, before the comput-
ation broke down because the number of non-zero entries in the preconditioning
decomposition became too large. The functional relationship to which the results
seem to tend as b/γ increases,

Sh = 0.285

(
b

γ

)0.472

, (6.4)

is again not the expected asymptotic behaviour given by (4.6). However, the relative
error between the power 0.472 and the expected 0.5 power is less than for a streaming
squirmer. Again, the discrepancy between numerical and analytical results is thought
to be due to the presence of the toroidal recirculation regions mentioned above.

Notice the combined effect of the swimming mechanism and the Péclet number, on
the nutrient uptake by the swimmer: if b is large then the Sherwood number remains
large even when 1/γ = O(1), so the effect of swimming on the nutrient uptake is
significant. However, our model is too idealized for practical applications and this
can be only a qualitative conclusion.

6.3. Browsing micro-organisms

Lastly, we consider the most general form of swimming motion, that is, one which
combines both streaming and hovering. In this case, we analyse the problem in terms
of the parameter 1/γ . The results for small 1/γ (up to 4.5) were obtained using the
Legendre polynomial expansion method, and the agreement with (4.1) was good to
within 1 % for 1/γ up to 0.6. Thereafter the numerical data start to diverge.

For intermediate and large 1/γ , the flow field strongly influences the nutrient
concentration distribution at the back of the squirmer, as figure 3 shows. Also,
increasing W had a considerable effect on the nutrient uptake. For instance, if
1/γ = 200 and b = 60, the Sherwood number is 20 % larger when W = 10 than when
W = 1. This suggests that the swimmer may be more likely to stream rapidly when
browsing. However, hovering also has a positive effect, for the Sherwood number is
smaller if b = 0 and W = 10 than when b = 60 and W =10. Thus, in terms of uptake
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Figure 3. Concentration contours C = 0.05 (upper curves) and C = 0.85 (lower curves), for
b = 60, W = 1 (dash-dotted lines) and b =60, W = 10 (dashed lines). For both values of W , the
parameter 1/γ was set to 110.

rate, the micro-organisms will try to hover and stream at the highest possible speed.
However, this might not be so advantageous in terms of energy requirements, as
investigated in the next section.

7. Energy dissipation
The total rate of energy dissipation in the fluid, as a result of the squirming motion,

is of the same magnitude and opposite sign as the total rate of working E by the
fluid on the surface, calculated by Blake (1971b). A suitably modified version of his
expression gives

E =
16πµ

3
B2

1 +
8πµ

3
B2

2 +
4πµ

3
B2

3 . (7.1)

The average rate of working 〈E〉, over a time cycle, is found by taking the real
part of each Bn, squaring it, integrating the result over a time period and dividing
the final expression by the time period. In order to express 〈E〉 in terms of the
hovering and streaming parameters, note that b and W depend on b2 in the same
way. Thus, we assume that b2 = 1. Now, define a non-dimensional energy dissipation
as Ẽ(ε, b, W ) = 〈3E/(4πµ)〉; using the definitions of b and W , we find that

Ẽ(ε, b, W ) = 1 + W 2

(
1225

32
+

245

12

b

W
+

85

18

b2

W 2

)

+2ε

[
W 2

(
175

64
+

125

24

b

W
+

25

36

b2

W 2

)
− 1

14

]2

+ ε2W 2

(
505

48
+

5

18

b

W
+

25

27

b2

W 2

)
. (7.2)

Consequently, the energy dissipation depends on the characteristics of the swimming
mechanism, but (of course) not on the Péclet number.
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Figure 4. Sherwood number contour plots (solid lines) and E contour plots (dashed lines)
when 1/γ = 0.15. E increases in the direction of increasing b/W and increasing W . The four
pairs of contours plotted here correspond (from bottom to top) to (Sh − 2, E) = (5, 4.2 × 1015),
(10, 2.8 × 1016), (15, 7.9 × 1016) and (20, 1.6 × 1017) – the values of E are the approximate
constrained minima for the values of Sh shown here.

As given in (7.2), we see that the energy dissipation is a second-order polynomial
in the amplitude ε of the oscillations, and that each coefficient of the polynomial
has the same qualitative behaviour (for positive values of W and b): they increase as
either W or b increases. Therefore, we may take a particular value of ε (here, ε =0.1)
without fear of distorting the qualitative results. If we calculate E for the three pairs
of (b, W ) considered at the end of § 6, we find that E(0.1, 0, 10) = 1.88 × 104, whereas
E(0.1, 60, 1) = 1.60 × 106 and E(0.1, 60, 10) = 6.99 × 106. Therefore when b = 0 and
W = 10 the organism dissipates less energy, but with this mode it also absorbs less
nutrient. In practice we might expect it to make a compromise and choose the
self-propulsion mode with least energy dissipation, for a given Sherwood number.

Therefore, one should be able to find b/W and W such that E is minimum, for
given Sh and 1/γ . When 1/γ is small this extremum, if it exists, can be determined
using equation (4.1) for the Sherwood number as a constraint. However, it is simpler
to analyse the problem graphically and use (4.1) to plot Sherwood number contours
instead. The same applies to large 1/γ , assuming the asymptotic expression (4.6) for,
say, 1/γ � 1000.

Figures 4 and 5 show these contours (solid lines) for 1/γ = 0.15 and for 1/γ = 1000.
It is of interest to note that Sh increases in the directions both of increasing b/W and
of increasing W . If we construct a contour plot of Sh, then for 1/γ = 0.15 we can find
a curve E = constant (dotted lines) which touches the Sh contour plot at only one
point; this corresponds to a minimum of the energy dissipation for that uptake rate,
since curves with larger E intersect the chosen Sherwood number contour at more
than one point. At large 1/γ (= 1000), however, this minimum dissipation for given
uptake rate occurs at b =0 (figure 5). We conclude that, in the ranges of the Sherwood
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Figure 5. Sherwood number contour plots (solid lines) and E contour plots (dashed lines)
when 1/γ = 1000. Same comments as for the previous figure apply at large 1/γ . Note, however,
that the energy minima occur for streaming motion, i.e. b = 0. The two pairs of contours are
(Sh,E) = (0.1, 4.3 × 108) and (0.15, 1.15 × 1010).

number where the asymptotic expansions are valid, there is an optimal swimming
motion which minimizes the energy dissipation for a given Sherwood number, and
a swimming micro-organism may be expected to choose that swimming mode, other
things being equal. However, other factors, such as mate searching or predation, may
make other swimming modes more appropriate in practice.

8. On an alternative boundary condition
We now consider an alternative boundary condition representing a case in which

nutrients are taken up by the micro-organism, and are consumed at a given rate
per unit volume, as well as diffusing within it. This internal consumption limits the
nutrient uptake rate when there is little resistance to mass transfer in the fluid, i.e.
when the concentration boundary layer is thin, i.e. when γ −1 is large. This formulation
was considered by Magar et al. (2003) for steady squirmers; the nutrient concentration
inside the cell, Ccell, satisfies

∂Ccell

∂t
+ k2Ccell = Dcell∇2Ccell, (8.1)

with Dcell the nutrient diffusivity inside the cell, and k the nutrient absorption
coefficient. Now, given that the concentration outside the cell is a regular expansion
of the amplitude of oscillation ε, we assume that Ccell =

∑∞
n =0 εn(Ccell)n; thus, all the

(Ccell)n are solutions of equation (8.1).
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Also, since we are interested only in the average nutrient uptake, we may consider
the steady solution for the nutrient distribution inside the cell. Thus, (Ccell)n satisfies

κ2(Ccell)n = ∇2(Ccell)n, (8.2)

with κ = ak/
√

Dcell, and the average concentration distribution outside the micro-
organism is still described by equation (3.5), except that here we take the dimensionless
concentration C0 = C∗/C∗

∞. The boundary conditions,

C0 → 1 as r → ∞, and
∂C0

∂r
= D′ ∂Ccell

∂r
= β ′(C0 − Ccell) when r → ∞, (8.3)

with β ′ = β/D and D′ = Dcell/D, and equations (3.5) and (8.2), are all four of the same
form as those analysed by Magar et al. (2003), the only difference being the effective
external velocity field A.

At small values of 1/γ , the solution is found in the same way as in the above
paper. The zeroth-order solution is spherically symmetric both inside and outside the
micro-organism, and the solution was found in the form

C00 = 1 − λ

r
, (Ccell)0 =

κλ

κ cosh κ − sinh κ

sinh(κr)

κr
, (8.4)

with

λ =
β ′D′(κ cosh κ − sinh κ)

(1 + β ′)D′κ cosh κ + (β ′ − D′ − β ′D′) sinh κ
. (8.5)

As in Magar et al. (2003) we see that λ needs to be positive for the concentration
at the surface to be smaller than the ambient concentration, and this is true for all
(positive) values of the physical constants κ , β ′, D′. The Sherwood number is defined
by equation (2.3), with a factor 1/(2λ) so that Sh = 1 at zero 1/γ . The first-order
(in ε) solution can be determined easily as well. However, we are only interested in the
spherically symmetric term (that is the one proportional to P0, which is independent of
the angular direction) of the subsequent C0n terms of the regular expansion, because
that is the only one contributing to the integral in (2.3), and thus to the mass transfer.
A series of computations lead us to a Sherwood number expansion of the form

Sh = 1 − β ′

γ
+ O(ε2). (8.6)

The Sherwood number is again – cf. equation (4.1) – a linear function of the Péclet
number, up to this order; however, the slope does not depend on the streaming velocity
but on the permeability of the membrane and the nutrient diffusivity. A decrease of
nutrient diffusivity inside the cell leads to a decrease in nutrient absorption, while a
decrease in membrane permeability has the opposite effect.

As for the large-1/γ case, the analysis and the results are, qualitatively, the same
as those presented in Magar et al. (2003), and the reader is referred to that paper for
further details. The conclusion is that, with this alternative formulation, the Sherwood
number is again of order one, that is, independent of the cell size, but still considerably
larger than its value at 1/γ = 0.

9. Conclusions
This study shows that the average nutrient uptake of an active squirmer depends

on the propulsion mechanism, although either an increase in streaming speed or an
increase in hovering speed enhances the uptake rate. We have concentrated on the
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case when the Péclet number is large, so that advection dominates the distribution of
nutrients; the Sherwood number was expressed as an asymptotic solution for small
and large values of the parameter 1/γ = ε2P .

Numerical and analytical solutions agree well when 1/γ is small, but some
discrepancy appears at large 1/γ , especially when streaming is present. We suggest
that this is due to the small recirculation regions in the effective mean velocity field
on the squirmer’s surface: these regions are so small that the large-1/γ asymptotic
expansion could be valid only at immense values of 1/γ , much larger than those
presented in this paper. Also, a model of the average nutrient uptake, where we take
into account consumption and diffusion inside the swimmer, led to results similar to
those presented by Magar et al. (2003) for steady squirmers.

We have shown that there are optimal swimming characteristics for minimizing the
energy dissipation for a given rate of nutrient uptake, at least for low and high values
of the parameter 1/γ . In particular, at large 1/γ hovering is energetically expensive,
so pure streaming locomotion is likely to be observed. However, other propulsion
mechanisms would come into play in special circumstances where the priorities of the
micro-organism change from feeding to, for instance, surviving predation, or mating.
In those cases, bursts of movement may be more appropriate and thus minimal energy
criteria would be violated; however, during those bursts the absorption of nutrients
could be very large.

Finally, we note that the model presented here is still too idealized to be applicable
to any real living creature, so theoretical and experimental developments are still
needed. As an example, radial oscillations of the surface of the swimmer are an
important feature of any realistic model of ciliary propulsion, and should be included
in models focusing on ciliate nutrient uptake. Also, it is of interest to analyse the
sensitivity of the nutrient uptake to the choice of boundary conditions at the cell
surface, when the squirmers are submerged in the turbulent ambient flows commonly
encountered in the ocean.

We thank Dr T. Goto for providing the Finite Volume code and Dr J. Malarkey
for his helpful comments on the final draft of the manuscript. This work was funded
by a PhD grant from DGAPA (UNAM, Mexico) and a postdoctoral contract (from
the University of Cambridge) to the first author. This is contribution 504/40 to the
EU ELOISE NTAP project, number EVK-3-CT-2000-00022.

Appendix A. Explicit form of the velocity field
As explained in § 1, one can determine the explicit dependence on time and the

three parameters b1, b2 and b3 of the flow field, obtaining the expression (1.6) for the
radial component, and expression (1.7) for the angular one. The functions in those
equations are given by

u0 =
4b2

15

(
3b3

7
−b1

)(
1

r3
− 1

)
P1 +

b2

5

(
2b1 +

b3

3

)(
1

r5
− 1

r3

)
P3, (A 1)

u1 =
2

3
b1

(
1

r3
− 1

)
P1 cos t − b2

(
1

r4
− 1

r2

)
P2 sin t + b3

(
1

r5
− 1

r3

)
P3 cos t, (A 2)

u2 =
2b2

15

(
b1 +

2b3

7

)(
1

r3
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(
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1

2
− 3b1b3

7
+
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2

14
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3
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)(
1

r4
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r2

)
P2
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5

(
b3

3
− 3b1

)(
1

r5
− 1

r3

)
P3 cos 2t, (A 3)
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for the radial velocity, and

v0 =
4b2

15

(
3b3
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− b1

)(
1
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)
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for the angular one. The functions above, when introduced in (1.6) and in (1.7),
complete the determination of the flow field for the problem of the unsteady squirmer.
Now, the velocity field can be written as

(uj , vj ) = Re(ũj exp(ij t) = (ûj , v̂j ) cos j t − (ũj , ṽj ) sin j t.

From the equations above, it is easy to deduce that

(û0, v̂0) = (u0, v0); (ũ0, ṽ0) = (0, 0);
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.

Also, in order to determine the concentration field, we need to consider an
approximation of the velocity near the surface of the micro-organism. We accomplish
this by performing a Taylor expansion of the expressions for (uj , vj ), around r = 1;
we scale the layer close to the surface by ε, so that the coordinate Y perpendicular
to the surface is defined as εY = r − 1. Then we deduce that the radial velocity may
be written as (u0, u1, u2) = εY (u01, u11, u21) + O(ε2Y 2), and the angular component
as (v0, v1, v2) = (v00, v10, v20) + εY (v01, v11, v21) + O(ε2Y 2), with each of the terms as
follows:
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Appendix B. Calculation of the effective velocity field
Introducing the velocity field defined in (3.6) into the transport equation (3.5), we

first note that

Im (ũ1 · ∇¯̃u1) · ∇C0 =
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ṽ1 +

1

r

(
ṽ1

∂

∂θ
v̂1 − v̂1

∂

∂θ
ṽ1
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,

where the operators in the square brackets apply to the product of the velocity
component on their bigg and the corresponding component of the concentration
gradient. Equation (3.5) may, thus, be written as

(Ar1 + u0)
∂C0

∂r
+

Aθ1 + v0

r

∂C0

∂θ
= γ ∇2C0.

Therefore, the contribution to the effective velocity field, due to the flow (u1, v1), is of
the form

Ar1 =
1

2

{
ũ1(û1)r − û1(ũ1)r +

1

r
[ṽ1(û1)θ − v̂1(ũ1)θ ]

}
,

Aθ1 =
1

2

{
ũ1(v̂1)r − û1(ṽ1)r +

1

r
[ṽ1(v̂1)θ − v̂1(ṽ1)θ + û1ṽ1 − ũ1v̂1]

}
,

where the subscript following a round bracket means partial differentiation, with
respect to that subscript, of the velocity component inside the round brackets. All the
spatial functions ũ1, û1, ṽ1, v̂1, and their derivatives, may be easily deduced from the
definitions in Appendix A and from simple algebraic manipulations. We now replace
the terms by their explicit form as functions of r , the Legendre polynomials, and their
derivatives. Then we write both (Ar1, Aθ1) and (u0, v0) as sine and cosine series, and
sum the series. We obtain (Ar, Aθ ) as a Fourier expansion. The final step is to write
each sine and cosine as a sum of Legendre polynomials (for Ar ), or as a sum of the
polynomials Vn (for Aθ ). The resulting expressions are, then, manipulated so that the
effective velocity can be represented as the sum of a hovering velocity, (A)hov, which
is proportional to the parameter b = b1b2, and a streaming velocity vector, (A)unif,
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proportional to the velocity scale W we defined as

W =
4

5
b2

(
− b1

3
+

b3

7

)
.

Thus, the velocity field is written as Ar = b(Ar )hov + W (Ar )unif, and Aθ = (Aθ )hov +
(Aθ )unif, and its components are as follows:
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Notice that the tangential velocity at the surface of the micro-organism is 5(b/3 +
W/4)V5, and thus vanishes at the same points as V5.

Also, it can be easily shown that the velocity field above is solenoidal, and that it
is the gradient of a stream function ψ = b ψhov + W ψunif, where

ψhov = sin2 θ
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and

ψunif = sin2 θ
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are the hovering and the streaming stream functions, respectively.
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